Tips and Pitfalls:
Maximizing Custom Design Tool Interoperability and Choice through
OpenAccess

Mark Waller, VP of Research and Development, Pulsic

The promise of the OpenAccess database format is simple but powerful: standard
interoperability. This promise is very attractive to custom design teams that want to
be able to use best-in-class tools in their design flows, regardless of supplier. The
reality, however, is that users sometimes experience less interoperability than they
had expected, and find that their choices are more limited than they had imagined.
Often, this lowered level of interoperability is caused by choices users make as they
migrate from proprietary database formats to OpenAccess. This paper will discuss
several common migration pitfalls that can cause custom design teams to
experience a lower-than-expected level of interoperability. It will also provide tips
to help maximize the level of interoperability, and thus tool choice, gained for their
custom designs through their migration to OpenAccess.

Migrating to OpenAccess: Optimizing the Path to Interoperability

When making a migration to a new database format, users naturally want to take a
path that will change their current flow as little as possible. Accordingly,
OpenAccess has been designed to accommodate a very easy migration path that
minimizes changes in library elements and flow. However, the “easiest” path can
actually have pitfalls that limit interoperability. A path that avoids these pitfalls will
maximize interoperability and tool choice.

In general, migration pitfalls are caused by user choices that fall into two categories:
maintaining or adopting proprietary data types that limit interoperability, and
failing to adopt features in OpenAccess that increase interoperability.

Pitfall: Using Proprietary Pcells

A prime example of the “proprietary data” pitfall arises with Pcells, which are
parameterized cells whose layout is dependent on user-defined parameters. Pcells
can be defined using numerous languages, some of which result in better
interoperability than others. Understandably, users are often hesitant to move to
another language, preferring to continue to use a language they know well, even if it
is proprietary. However, use of proprietary languages, no matter how well users
know them, will limit interoperability and thus tool choice.

Tip: Avoiding the Pcell Pitfall

There are several new, open languages are available for defining Pcells that offer
greater interoperability than proprietary languages. Any of these languages will
enable any tool vendor to interpret Pcells correctly. The leading choices in terms of
current market adoption are Python and TCL. Python is a free object-oriented



http://pulsic.com/products/whitepapers-datasheets/

language that some suppliers have adopted for Pcells. Experienced TCL users can
used the native OpenAccess/TCL interface to define Pcells. This interface is not as
sophisticated as some other OpenAccess interfaces, so those new to TCL may find
this path difficult. But for those already familiar with TCL, this could be a good path,
both in terms of adoption curve and interoperability. In addition, the new Si2
(www.si2.org) OpenPDK coalition may result in new, open languages.

Tip: Easing the Pcell Transition
* Decide which of the more interoperable languages is best for a particular
design team.
* Use the transition to a new process as the trigger for the migration to the
targeted interoperable language. Pcells are often redefined for every process,
so there is no duplication of effort, but big gains in interoperability!

Incomplete Migration: The “Easy” Path that Limits Interoperability
It is natural for design teams to want to limit the work involved in making the

migration to OpenAccess. However, sometimes the “easiest” path doesn’t provide all
of the possible benefits of OpenAccess. Design teams often fail to adopt all the
available features when they migrate to OpenAccess, choosing instead to maintain
as much of their current, often proprietary, flow as possible. In their effort to
minimize the “overhead” of the migration to OpenAccess, these design teams hobble
their efforts to achieve maximum interoperability.

Pitfall: Maintaining Proprietary Layer Purpose Definition

Custom design automation tools require “layer purpose” as an input. To enable tool
interoperability and maximize choice, a common approach to identifying layer
purpose is needed. Design teams may have existing objects paired with layer
purposes in an ad-hoc manner. However, all tools may not understand these
object/layer purpose pairs, so their use could limit tool choice and/or create
confusion or additional work when integrating with new tools.

Tip: Avoiding the Layer Purpose Pitfall

The newest version of OpenAccess has a richer variety of object types, each of which
has a pre-defined layer purpose. If design teams employ these special objects
available in OpenAccess, any tool can understand the layer purpose, because it is
embedded in the definition of the object.

Pitfall: Maintaining Old Technology Database Formats

The OpenAccess technology database defines devices (such as vias) and metal layers
for each process, including spacing rules and other process constraints. Design
constraints can be part of the technology database as well. However, while process
definitions will be the same for every project targeted to a particular process, design
constraints will vary for each project. If these are data are stored together in one
technology file, the file must be edited and updated for every project - a time-
consuming and error-prone process.



Tip: Avoiding the Technology Database Pitfall

OpenAccess has a new hierarchical technology database, which enables design
teams to share common process information across projects but maintain separate
design constraints data by changing only that level of the hierarchy. While the
migration to the new hierarchical database might seem to create additional work,
once the migration is accomplished, design teams can save work over multiple
projects through the adoption of the new format.

Pitfall: Maintaining Highly Customized Vias

Historically, vias have been highly customized using proprietary languages. The
newest version of OpenAccess has a very robust standard via, which can be
parameterized to meet nearly every need, with support for even drawn vias.
However, the option to define custom vias is still available. Unfortunately, many
design teams wishing to avoid additional migration work continue to use their old
custom vias, which may be defined in proprietary languages. Continuing with this
approach limits interoperability and tool choice.

Tips: Avoid the Customized Via Pitfall

* Adopt the new standard via available with OpenAccess - nearly every design
team will find that this new via format meets their needs.

* If custom vias are truly necessary, defining the vias using an open language
such as Python or TCL can provide a more interoperable solution.

e Asalastresort, use an evaluator. However, be sure to use one based on an
open language. Also, be sure to read the OpenAccess manual for all the
details of how to do this.

Pulsic Support for OpenAccess and Interoperability

Custom designers often design by hand, rather than using design automation
technologies. However, at advanced process nodes, hand-design becomes more
difficult and these habitual hand-designers may be looking to adopt custom design
automation technologies. Standards such as OpenAccess can make this adoption of
automation smoother as users move to advanced nodes.

Pulsic offers custom designers full support for the OpenAccess format. Users can
specify preferences via a dialog interface. Pulsic is a long-standing member of the
Si2 OpenAccess Coalition and has recently joined the Si2 OpenPDK Coalition.

In addition, Pulsic is also working with other industry leaders on another
interoperability pitfall: non-standardized design constraints. While OpenAccess
offers a standard for interoperability for design data, the representation of design
constraints is anything but standard.



Full Adoption of Standards Empowers Design Teams
OpenAccess, like all standards, was founded on the premise that customer data

belongs to the customer, not to any one vendor or flow and thus, it inherently
supports user choice of design tools. Choice empowers design teams to create the
flows that best meet their needs.

While maintaining current data types, languages and methodologies can seem to be
the smoothest migration path to OpenAccess, there are instances where this clearly
limits interoperability and design tool choice. If design teams can avoid the pitfalls
of maintaining proprietary data types and incomplete migration, OpenAccess can
provide the interoperability custom design teams seek to maximize their choice of
design tools.



